This commit is contained in:
Anton Wirsing 2023-11-12 19:40:27 +01:00
commit f393130598
2 changed files with 30 additions and 0 deletions

19
imageEncoder.py Normal file
View File

@ -0,0 +1,19 @@
import requests
from PIL import Image
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
# load a fine-tuned image captioning model and corresponding tokenizer and image processor
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# let's perform inference on an image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# autoregressively generate caption (uses greedy decoding by default)
generated_ids = model.generate(pixel_values)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)

11
run.py Normal file
View File

@ -0,0 +1,11 @@
from transformers import pipeline
#pipe = pipeline("text-generation", model="TheBloke/llava-v1.5-13B-AWQ",device_map="cuda:1")
pipe = pipeline("image_classification", model="TheBloke/llava-v1.5-13B-AWQ",device_map="cuda:1")
images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipe(images)